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Abstract
Bias correcting and downscaling climate model simulations requires reconstructing spatial and intervariable dependences of 
the observations. However, the existing univariate bias correction methods often fail to account for such dependences. While 
the multivariate bias correction methods have been developed to address this issue, they do not consistently outperform the 
univariate methods due to various assumptions. In this study, using 20 state-of-the-art coupled general circulation models 
(GCMs) daily mean, maximum and minimum temperature  (Tmean,  Tmax and  Tmin) from the Coupled Model Intercomparison 
Project phase 6 (CMIP6), we comprehensively evaluated the Super Resolution Deep Residual Network (SRDRN) deep learn-
ing model for climate downscaling and bias correction. The SRDRN model sequentially stacked 20 GCMs with single or 
multiple input-output channels, so that the biases can be efficiently removed based on the relative relations among different 
GCMs against observations, and the intervariable dependences can be retained for multivariate bias correction. It corrected 
biases in spatial dependences by deeply extracting spatial features and making adjustments for daily simulations according 
to observations. For univariate SRDRN, it considerably reduced larger biases of  Tmean in space, time, as well as extremes 
compared to the quantile delta mapping (QDM) approach. For multivariate SRDRN, it performed better than the dynamic 
Optimal Transport Correction (dOTC) method and reduced greater biases of  Tmax and  Tmin but also reproduced intervariable 
dependences of the observations, where QDM and dOTC showed unrealistic artifacts  (Tmax <  Tmin). Additional studies on 
the deep learning-based approach may bring climate model bias correction and downscaling to the next level.

Keywords Climate models · Bias correction · Downscaling · Deep learning · Spatial dependence · Multivariate 
dependence · Model evaluation

1 Introduction

Simulated variables from coupled general circulation models 
(GCMs) can exhibit large systematic biases relative to obser-
vational datasets and may have limited usefulness for climate 
impact assessments unless the biases are corrected (Cannon 
2018; Mearns et al. 2012; Sillmann et al. 2013). For this 
reason, various bias correction methods have been devel-
oped to tackle this issue, including univariate bias correction 
methods such as the widely used quantile mapping approach 
[QM; e.g., Panofsky and Brier (1968), Thrasher et al. (2012), 
Wood et al. (2002)] as well as multivariate bias correction 
approaches which incorporate intervariable dependence with 

capability of correcting multiple variables simultaneously 
(Bürger et al. 2011; Cannon 2016; Chen et al. 2018; Mehro-
tra and Sharma 2012, 2019; Robin et al. 2019).

Systematic errors in GCM outputs include large biases in 
spatial and intervariable dependences (Bürger et al. 2011; 
Nahar et al. 2018). Correcting biases on spatial distribution 
of climate variables is very important for climate impact 
studies such as agriculture or water resources planning and 
management (Nahar et al. 2018). Ignoring the intervari-
able dependence structure between variables can result in 
obtaining corrected outputs with inappropriate physical 
laws (Agbazo and Grenier 2020; Thrasher et al. 2012) and, 
thereby, distorting the results of impact studies (François 
et al. 2020; Maraun et al. 2017; Zscheischler et al. 2020). 
However, most current bias correction approaches are 
applied at the grid point basis and do not consider spatial 
dependence across the domain. The existing multivariate 
bias correction methods simplify calculation process as 
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linear programming problem (Robin et al. 2019) or assume 
predefined intervariable relationships including Pearson cor-
relation (Bürger et al. 2011; Cannon 2016; Mehrotra and 
Sharma 2012), Spearman rank correlation (Cannon 2016), 
lag 1 autocorrelation for rank dependence (Mehrotra and 
Sharma 2019), and linear combinations of normally dis-
tributed variables (Cannon 2018; Chen et al. 2014). Due to 
these simplifications and assumptions, recent intercompari-
son studies have revealed that the current multivariate bias 
correction approaches may fail to compete with univariate 
methods (Chen et al. 2018; François et al. 2020; Guo et al. 
2020; Meyer et al. 2019; Van de Velde et al. 2020). For 
example, Van de Velde et al. (2020) found that the multivari-
ate methods often perform worse than the univariate meth-
ods especially for temperature and advantages of multivari-
ate bias correction are weakened for most climate regimes 
in climate change condition and thus they recommended the 
simpler univariate bias correction methods for assessing cli-
mate change impact. The advantages of using current multi-
variate bias correction methods for impact modeling are also 
region dependent, which is not as profound in the validation 
period as in the calibration period (Guo et al. 2020).

Deep learning with convolutional neural network (CNN) 
types of approaches have achieved notable progress in mod-
eling spatial context data in computer vision field (LeCun 
et al. 2015). Deep learning for climate sciences are still at 
early stage (Reichstein et al. 2019) but growing rapidly dur-
ing recent years. Recent studies successfully applied deep 
convolution based architecture to objectively extract spatial 
features to define and classify extreme weather (for exam-
ple, hurricanes, storms, and atmospheric rivers) in numerical 
weather prediction model output (Liu et al. 2016; Racah 
et al. 2016), forecast ENSO (Ham et al. 2019; Liang et al. 
2021), and improve precipitation nowcasting (Ravuri et al. 
2021). In particular, image to image translation using gener-
ative adversarial networks (GANs) or single generator based 
models with stacked convolutional layers has successfully 
learned the mapping between an input image and an out-
put image using a training set of aligned paired or unpaired 
images, so that the deep learning models can systematically 
convert or correct one image according to another (Isola 
et al. 2017; Yang et al. 2018; Zhu et al. 2017). CNN types 
of models have also successfully been used to systematically 
remove different types of noises at different levels from pho-
tos to generate clean ones as well as mixed noises that follow 
different distributions (Tian et al. 2020). These progresses of 
deep learning on spatial feature extraction and image conver-
sion or correction provide potentials for addressing the exist-
ing issues on bias correcting GCM outputs. Furthermore, the 
CNN-based model can be multivariate model by taking mul-
tiple input-output channels. Relationships among different 
channels are integrated into model training process, which 
enables the models to capture complex relationships among 

different variables beyond our prior knowledge, providing a 
great potential for improving multivariate bias corrections 
of GCMs.

Deep CNN-based models have been used for GCM bias 
correction and downscaling in recent years. For example, 
Liu et al. (2020) developed an image super resolution archi-
tecture called YNet to downscale monthly mean tempera-
ture/precipitation from 35/33 GCMs, demonstrating that the 
model outperformed a shallow plain architecture (Vandal 
et al. 2017) and a traditional statistical downscaling method. 
Rodrigues et al. (2018) developed a CNN-based deep learn-
ing architecture namely DeepDownscale to downscale daily 
precipitation from 4 GCMs into the local scale and indicated 
that the model performed better than a regional dynamic 
downscaling method. François et al. (2021) applied a simple 
CNN-based GANs architecture to bias correct GCM outputs 
and found that its performance is generally better than QM 
and other two multivariate bias correction methods. In Fran-
çois et al. (2021), performances of spatial adjustments from 
their CNN-based GANs were assessed through spatial cor-
relations and energy distances. Pan et al. (2021) developed a 
sophisticated CNN-based GANs architecture namely RADA 
with other variables as dynamical constraints to bias correct 
daily precipitation and found that RADA performs mostly 
better than QM and a multivariate method (Cannon et al. 
2018) particularly on inter-field correlation. Despite the 
advances achieved from these studies, they did not account 
for multivariate bias correction nor explicitly quantify model 
performance for correcting biases of spatial dependence.

In this study, using 20 state-of-the-art GCMs daily mean, 
maximum and minimum temperature outputs from the Cou-
pled Model Intercomparison Project phase 6 (CMIP6), we 
comprehensively evaluate a new Super Resolution Deep 
Residual Network (SRDRN) model (Wang et al. 2021), 
which was developed based on an advanced deep CNN type 
architecture, in comparison with conventional bias correc-
tion approaches, for addressing the aforementioned chal-
lenges for climate model downscaling and bias correction. 
The structure of this paper is organized as follows: Sect. 2 
introduces data and methodology, including the experimen-
tal design, the SRDRN model and the benchmark bias cor-
rection approaches; Sect. 3 presents results; discussions and 
conclusions are provided in Sects. 4 and 5, respectively.

2  Data and methodology

2.1  Data and area of study

The climate system is highly complex and it remains funda-
mentally impossible to consider everything in one single cli-
mate model (Tebaldi and Knutti 2007). Kumar and Ganguly 
(2018) have found that climate variability of multi-model 
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ensemble is larger than climate internal variability of single 
climate models for all projection time horizons and spatial 
resolutions for precipitation and temperature, and the latter 
is dominated only for the initial few decades. To reasonably 
account for uncertainties in climate simulations and projec-
tions, this study explores bias correction for multi-model 
ensemble.

For the climate simulations, daily mean  (Tmean) surface air 
temperatures simulated by 20 commonly used GCMs were 
extracted from the newest Coupled Model Intercomparison 
Project phase 6 (CMIP6) (Eyring et al. 2016). Maximum 
 (Tmax) and minimum  (Tmin) surface air temperature are avail-
able in 18 out of the 20 GCMs. The 20 GCMs’ were devel-
oped by different climate research centers all over the world 
and have different spatial resolution varying from 0.5° to as 
large as 2.8° (see Table 1). The 20 GCMs provide outputs of 
climate variables under the historical scenario for the refer-
ence period (1850–2014), but the period of 1979 to 2014 
was used in this study in order to match with available cli-
mate reanalysis (used as a surrogate to observations). Most 
GCMs archived in CMIP6 include multiple ensemble mem-
bers (named with rninpnfn, where r represents realization, i 
represents initialization method, p represents physics, f rep-
resents forcing, and n can be different numbers) and we used 
single member for each model in this study for fair compari-
sons. The outputs of the 20 GCMs were extracted from the 
ensemble member of r1i1p1f1, except for CNRM-CM6-1 
(from r1i1p1f2), CNRM-CM6-1-HR (from r1i1p1f2), 

BCC-CSM2-MR (from r2i1p1f1), HadGEM3-GC31-LL 
(from r1i1p1f3) and HadGEM3-GC31-MM (from r1i1p1f3). 
Prior to bias correction and downscaling, the GCM outputs 
were regridded into a common 1° × 1° resolution using 
bilinear interpolation.

The European Center for Medium-Range Weather Fore-
cast’s (ECMWF) ERA5 dataset was used as high-resolution 
observations (hereafter “observations”), which has 0.25° 
resolution covering the period from 1979 to 2014 (Hers-
bach et al. 2020). The bias correction and downscaling 
experiments were performed in the rectangle area cover-
ing the entire southeastern of the United States and Gulf of 
Mexico, ranging from 99° W to 75.25° W in longitude and 
from 25°N to 36.25°N in latitude. The study area falls into 
humid subtropical climate and is highly influenced by hot 
extreme events.

2.2  Methods

This section presents a brief description of the SRDRN 
deep learning model, a widely used univariate quantile delta 
mapping (QDM) bias correction method and a multivariate 
bias correction approach namely dynamic Optimal Trans-
port Correction (dOTC, Robin et al. 2019). The univariate 
QDM and multivariate dOTC methods serve as benchmark 
approaches to measure the potential added values from the 
SRDRN downscaling and bias correction. We designed 
two experiments to perform and evaluate the bias correc-
tion methods. For the experiment 1, we bias corrected and 
downscaled daily mean temperature  (Tmean) from 20 CMIP6 
GCMs using univariate SRDRN with single input-output 
channel and QDM, respectively. For the experiment 2, as 
demonstrated in Fig. 1, we bias corrected and downscaled 
 Tmax and  Tmin simultaneously using multivariate SRDRN 
with multiple input-output channels, as well as separately 
using QDM. For both experiments, SRDRN sequentially 
stacked GCMs daily temperature data, which greatly aug-
ments the data size for training a robust model but also 
accounts for relative relations among different GCMs against 
observations. As indicated in previous studies, there are sig-
nificant differences in bias among different GCMs (Nahar 
et al. 2017). The underlying hypothesis posed here is that 
the SRDRN can identify mixed biases from different GCMs, 
given that CNN-type based architectures has been success-
fully used to remove mixed noises that follows different 
probability distribution (Tian et al. 2020). The observations 
(i.e. ERA5) were replicated and stacked correspondingly to 
match with each set of GCMs for generating pairs of coarse 
and fine resolution 2-dimentional temperature data on each 
day. Furthermore, we executed the multivariate dOTC in 
a relatively complex topography area around the state of 
Tennesse within the study area. We did not run dOTC in 
the entire research area due to its limitation of correcting 

Table 1  Basic information of 20 CMIP6 GCMs

NO. GCMs Resolution (lat × lon °) Country

1 GFDL-ESM4 1.0 × 1.25 NOAA, USA
2 GFDL-CM4 1.0 × 1.25 NOAA, USA
3 CESM2-WACCM 0.94 × 1.25 NCAR, USA
4 CESM2 0.94 × 1.25 NCAR, USA
5 CanESM5 2.81 × 2.81 Canada
6 CNRM-CM6-1 1.41 × 1.41 France
7 CNRM-CM6-1-HR 0.5 × 0.5 France
8 EC-Earth3 0.70 × 0.70 Europe
9 ACCESS-ESM1-5 1.24 × 1.88 Australia
10 IPSL-CM6A-LR 1.26 × 2.5 France
11 MPI-ESM1-2-LR 1.88 × 1.88 Germany
12 MPI-ESM1-2-HR 0.94 × 0.94 Germany
13 NorESM2-MM 0.94 × 1.25 Norway
14 NorESM2-LM 1.88 × 2.5 Norway
15 MIROC6 1.41 × 1.41 Japan
16 MRI-ESM2-0 1.13 × 1.13 Japan
17 INM-CM5-0 1.5 × 2.0 Russia
18 BCC-CSM2-MR 1.13 × 1.13 China
19 HadGEM3-GC31-LL 1.25 × 1.88 UK
20 HadGEM3-GC31-MM 0.56 × 0.83 UK
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variables in a large geographical area (François et al. 2020). 
We used the first 26 years daily data (1979 to 2004) as the 
training dataset, the middle 5 years (2005 to 2009) as the 
validation dataset to adjust hyperparameters and the last 5 
years (2010 to 2014) as the testing dataset for a “future” 
climate, so that the model can be tested in the nonstationary 
context. QDM and dOTC bias corrected each GCM indi-
vidually, with all the GCMs outputs spatially disaggregated 
from 1° into 0.25° resolution (Abatzoglou and Brown 2012; 
François et al. 2021) (same as the resolution of ERA5 obser-
vations) using bilinear interpolation before performing bias 
correction (Fig. 1).

2.2.1  SRDRN model

Here we provide a description of the SRDRN algorithm. For 
more details, the readers refer to Wang et al. (2021). The 
SRDRN algorithm was inspired by a novel super scaling 
deep learning approach in the computer vision field (Ledig 
et al. 2017), which is mainly comprised of residual blocks 
and upsampling blocks with CNN and batch normalization 
layers. To extract spatial patterns, the CNN layers apply 
filters to go through the input data to build local connec-
tion within nearby grids by computing the element-wise 

dot product between the filters and different patches of the 
input. The result is followed by a nonlinear activation func-
tion, here parametric ReLU (He et al. 2015) in this study. 
Batch normalization is a technique to standardize the inputs 
to a layer for each mini-batch and thus stabilize the learning 
process and accelerate the training of the model (Ioffe and 
Szegedy 2015).

The residual blocks equipped with CNN and batchnor-
malization layers are designed to extract fine spatial features 
and avoid degradation issue for the very deep neural net-
work. For plain deep neural networks, model accuracy can 
be easily saturated and degrade rapidly with the increase of 
network depth (He et al. 2016). Residual blocks, however, 
can improve model performance even for extensively deep 
networks (Silver et al. 2017) because residual blocks execute 
residual mapping and include skipping connections (see 
Fig. 14 in “Appendix A”). The way that skipping connec-
tion skips layers and connects next layers for the SRDRN is 
through element-wise addition in this study. The total num-
ber of 16 residual blocks were used in the SRDRN archi-
tecture, which makes the network very deep and has the 
potentials to extract fine spatial features.

The upsampling blocks are used to increase data resolu-
tion from coarse to high for the downscaling purpose. The 

Fig. 1  Schematic of the experi-
ment for bias correcting  Tmax 
and  Tmin using SRDRN (upper 
panel) and QDM (lower panel). 
Note: 18 out of 20 GCMs 
include both daily  Tmax and  Tmin 
data
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upsampling process is executed directly on the feature maps 
from convolutional layers and each upsampling block con-
sists of one convolutional layer and one upsampling layer 
followed by parametric ReLU activation function. The 
upsampling layer with nearest neighbor interpolation was 
chosen to increase spatial resolution. Each upsampling block 
sequentially and gradually increases the input low resolution 
feature maps by a factor of 2. In this study, the downscaling 
ratio (the ratio between coarse resolution and high resolution 
data) is 4 and thus we used 2 upsampling blocks.

Data normalization was executed as a data preprocessing 
step. Specifically, daily temperature was normalized by sub-
tracting the mean (µ) and dividing by the standard deviation 
(σ). Here µ and and σ are scalar values that were calculated 
based on the flattened variable for the training dataset. Dur-
ing the testing period, the model prediction was inversely 
normalized with µ and σ calculated from the GCM statistics 
in order to preserve the trend in the test dataset.

In this study, the mean square error (MSE) was chosen as 
the loss function (Wang et al. 2021). For the model output 
statistics (MOS), Maraun et al. (2010) indicated that obser-
vations and model simulations are not synchronized in time. 
In this study, we synchronously paired coarse resolution data 
from GCMs and observations and used MSE loss function 
to search an optimal solution. The underlying assumption is 
that the SRDRN is capable of reproducing distributions of 
the observations if synchronized biases are well corrected. 
The optimization algorithm Adam was applied to train the 
network with a learning rate of 0.0001 and other parameters 
with defaulted values. Through a series of experiments, we 
found that the learning rate of 0.0001 worked well in this 
study and the mini-batch size of 64 was chosen. We output 
validation loss for the validation dataset for each epoch to 
choose the best model for prediction.

2.2.2  Benchmark approaches

We used quantile delta mapping (QDM) as a univariate 
benchmark approach. Compared to quantile mapping (QM) 
method (Panofsky and Brier 1968; Thrasher et al. 2012; 
Wood et al. 2002), QDM accounts for the difference between 
historical and future climate scenario data and thus is capa-
ble of preserving trend of the future climate (Cannon et al. 
2015). QDM has been widely used to bias correct climate 
variables including daily temperature in recent studies, 
which indicated better performance compared to the other 
bias correction approaches (Cannon et al. 2015; Eum and 
Cannon 2017; Jose and Dwarakish 2021; Kim et al. 2021; 
Tegegne and Melesse 2021; Tong et al. 2020).

The basic equation of the QDM method comprises the 
bias corrected value term obtained from the observational 
dataset and the relative change term (delta) obtained from 
the GCM data, as defined in Eq. (1) below.

Where x̂o∶m,h∶p(t) = F−1
o,h

[
�m,p(t)

]
 and �m(t) =

xm,p(t)

F−1
m,h

[
�m,p(t)

] . 

Here x̂m,p(t)  is the bias corrected value of the model data for 
the projection period. x̂o∶m,h∶p(t) is the bias corrected value 
of the observed data for the historical period and �m(t) is the 
relative change in the model data between the historical and 
future periods. Thus, the bias corrected future projection at 
time t is given by adding the relative change �m(t) by the 
historical bias-corrected observed value. �m,p(t) is the per-
centile of x̂m,p(t) in the empirical cumulative density function 
( F ) over a time window around t  . F−1

o,h
 represents inverse 

empirical cumulative density function or quantile for the 
observed data in the historical period and F−1

m,h
 for quantile 

for the model data in the historical period. The time window 
to construct the empirical cumulative density function 
around time t was set to be 45 days in order to preserve the 
seasonable cycle. In this study, the historical and projection 
periods correspond to the training and testing data periods, 
respectively. Details about the QDM method are referred to 
Cannon et al. (2015).

In addition to QDM, we also considered a widely used 
multivariate bias correction method dOTC (François et al. 
2020, 2021; Robin et al. 2019; Van de Velde et al. 2020). 
Here we give brief description of this method. The dOTC 
corrects the marginal distributions and dependence struc-
tures altogether as the same time. Taking advantage of the 
optimal transport theory, dOTC constructs a multivariate 
transfer function, called a transport plan, for the adjustment 
of climate simulations with respect to references while 
minimizing an associated cost function. The coefficients 
subjected to constraints in the cost function are solved as a 
linear programming problem. Through this transfer function, 
multivariate distribution of a biased random variable (need 
to be estimated) and its correction are linked together. Any 
value of the variable to correct is associated with a condi-
tional law linking the biased value and its correction. Cor-
rections are drawn randomly from these conditional laws, 
which introduces some stochasticity into the bias correction 
procedure. Similar to QDM, dOTC also considers nonsta-
tionarity of the dependence structure between the calibration 
and the projection periods and, permits the evolution of the 
model (e.g., induced by climate change) to be considered in 
the bias correction procedure. Time series at each grid cell 
is considered as one dimension. We ran dOTC at a complex 
topography area around the state of Tennessee within the 
study area including 351 grid cells. With two variables  (Tmax 
and  Tmin), dOTC simultaneously bias corrected 702 time 
series and the setting is similar to François et al. (2021). The 
publicly available SBCK python code was used to execute 
dOTC and more details about dOTC are referred to Robin 
et al. (2019).

(1)x̂m,p(t) = x̂o∶m,h∶p(t) + �m(t),
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3  Results

The univariate SRDRN and the QDM bias correction results 
for  Tmean are presented in the Sect. 3.1 to 3.4. The multivari-
ate SRDRN, the QDM, and the dOTC bias correction results 
for  Tmax and  Tmin are shown in the Sect. 3.5. We also pre-
sent bilinear interpolation results of GCMs raw temperature 
simulations without bias correction (named as Bilinear), and 
the differences between Bilinear and observations are con-
sidered as total biases originated from raw GCMs outputs.

3.1  Overall agreement

The overall agreement between the observed and bias cor-
rected  Tmean was quantified using root mean square error 
(RMSE) and correlation coefficient. These metrics were 
calculated on a daily basis over the entire testing period 
(2010 to 2014) for all the grid points over the study region 
(Fig. 2) by flattening the spatial and temporal axes as one-
dimensional data. The results show that the SRDRN bias 
corrected and downscaled  Tmean have much lower RMSE 
and higher correlation coefficient values for all the 20 GCMs 
than QDM, suggesting SRDRN downscaled data are closer 
to observations. While the overall RMSE for QDM is lower 

than Bilinear, the correlation coefficient is not consistently 
higher than the Bilinear method for several GCMs, due to 
the limitation of QDM, which adjusts quantiles on a grid-
by-grid basis and is not able to correct the biases in spatial 
context. The SRDRN model, however, fully accounts for 
the spatial feature-based relationship between GCM outputs 
and observations on a day-to-day basis in the training pro-
cess and systematically removes the biases when applying 
to the testing dataset. Based on the overall RMSE, SRDRN 
reduced 8 to 20% total biases while QDM only reduced 0.6 
to 11% total biases depending on GCMs.

3.2  Spatial bias and dependence

To evaluate the performance on correcting spatial biases, 
we calculated annual average of daily map correlation 
between bias corrected GCMs and observations for  Tmean 
(Fig. 3). Here we firstly calculated daily map correlation 
by flattening the two-dimensional spatial data as one-
dimensional vector and then calculated the average over 
each year during the testing period. The results indicate 
that SRDRN shows greater map correlations (0.73 for 
SRDRN versus 0.68 for QDM) and a much smaller inter-
model variability (standard deviation of 0.017 for SRDRN 

Fig. 2  Overall assessment for 
daily mean temperature  (Tmean) 
from 20 CMIP6 GCMs
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versus 0.028 for QDM) compared to QDM, demonstrating 
the strength of SRDRN for correcting spatial biases.

We evaluated spatial dependence by comparing the spa-
tial semivariance of the bias corrected and downscaled 

 Tmean and the observed  Tmean. The spatial semivariance 
can be calculated using the equation below:

where I(j) is the  Tmean at location j and h is a displacement 
vector (spacing between grid cells). The R library “gstat” 
(Pebesma 2004) was used to calculate the spatial semivari-
ance. Figure 4 shows the RMSE and correlation coefficient 
of spatial semivariance between observed and bias corrected/
downscaled data by QDM and SRDRN as well as Bilinear 
for all the GCMs. These metrics were calculated daily over 
the entire testing period (2010 to 2014), which reveals how 
well each method can capture spatial dependence against the 
observations for each day. We can see that RMSE of SRDRN 
spatial semivariance is consistently lower than QDM and 
Bilinear, and correlation coefficient is much higher for all 
the GCMs, demonstrating that SRDRN corrected greater 
biases (as large as 40% total biases) than QDM (no greater 
than 30%) in terms of spatial dependences. We also evalu-
ated spatial dependence for each month. Figure 5 shows spa-
tial variograms (spatial semivariance versus distance) at a 
winter and a summer month for a randomly selected GCM 
(MPI-ESM1-2-HR). We can see there are large differences 
between the spatial variograms of Bilinear and OBS. QDM 

(2)�(h) =
1

2
⟨
�
I(j + h) − I(j)

�2⟩

Fig. 3  Annual average of daily map correlation for SRDRN and 
QDM

Fig. 4  RMSE and correlation 
coefficient of spatial semivari-
ance for SRDRN, QDM, and 
Bilinear  Tmean with observed 
 Tmean
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highly underestimates the semivariances of the observa-
tions, the semivariances calculated from SRDRN, however, 
are very close to the ones calculated from the observations, 
suggesting that the trained SRDRN during 1979 to 2004 
well adjusted spatial dependence of GCMs during the testing 
period (2010 to 2014).

3.3  Temporal bias

The SRDRN model treated daily spatial temperature data 
independently, which did not explicitly account for temporal 
dependence during bias correction. However, given daily 
spatial temperature data is well corrected and downscaled 
by SRDRN, we hypothesize that the SRDRN model could 
well reduce temporal biases. To test that, we evaluate both 
daily and climatology of downscaled and bias corrected 
 Tmean against the observations in time. Figure 6 shows down-
scaled and bias corrected results versus observed daily series 
of  Tmean averaged over the study area. While both QDM 
and SRDRN reduced the inter-model variability among 20 
GCMs especially during summer seasons, SRDRN removed 
more biases for low temperature than QDM during winter 
seasons. To examine how well the bias corrected and down-
scaled  Tmean reproduces the climatology of observations, 
Fig. 7 shows the monthly mean of QDM and SRDRN bias 
corrected daily  Tmean as well as Bilinear for the 20 GCMs 
against the observations. Overall, both SRDRN and QDM 
greatly reduced monthly mean biases compared with Bilin-
ear (removed about 4 °C biases for SRDRN and 3 °C biases 
for QDM). The monthly means of SRDRN bias corrected 

daily temperature well reproduced the observed climatol-
ogy with small inter-model variability. In comparison, the 
monthly means of QDM bias corrected daily  Tmean mostly 
underestimated the observed climatology during summer 
season and had relative larger inter-model variability in 
winter season compared to SRDRN.

3.4  Extremes

For  Tmean extremes, we evaluated 98th percentile tempera-
ture and annual maximum warm spells of the time series 
at each grid cell, which are two commonly used tempera-
ture extreme indices (Baño-Medina et al. 2020; Hertig et al. 
2019) and can have varying effects on agriculture, ecosys-
tems, energy use, and human health (Nairn and Fawcett 
2015; Nicholls et al. 2008; Pattenden et al. 2003; Pierce 
et al. 2014). Figure 8 shows that the RMSE for  Tmean at 
the 98th percentile between SRDRN bias corrected results 
and observations are around 1 °C among different GCMs. 
While RMSEs of SRDRN and QDM bias corrected  Tmean are 
much lower than Bilinear for most of the 20 GCMs, QDM 
shows much larger inter-model variability than SRDRN. 
Figure 9 presents the spatial distribution of 98th percen-
tile  Tmean of observations (OBS), the raw output, Bilinear, 
QDM and SRDRN of a randomly selected GCM (CESM2-
WACCM) as well as their biases. We can see that GCM has 
very high temperature biases around the northwest region of 
the study area and the states border between Tennessee and 
North Carolina (the edge of the Appalachian Mountains). 
Both QDM and SRDRN substantially reduced biases in the 

Fig. 5  Spatial variogram of SRDRN and QDM bias corrected and downscaled MPI-ESM1-2-HR  Tmean, a randomly selected GCM, as well as 
Bilinear and observations (OBS) during a winter and summer months
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areas with high biases. Compared to QDM, SRDRN reduced 
more biases over ocean areas. Since  Tmean over the ocean 
surface is more homogeneous than over land, SRDRN’s fea-
ture extraction ability likely treated  Tmean over the ocean as 
background features, which has been found relatively easier 
to be captured than more detailed fine features (Sobral and 
Vacavant 2014). QDM, however, only adjusted temporal 
sequence of daily temperature at each individual grid point 
without accounting for homogeneity feature of the ocean.

Warm spell is defined as consecutive days when  Tmean 
is greater than 90th percentile (Baño-Medina et al. 2020; 
Hertig et al. 2019). Figure 10 presents RMSE of the annual 

maximum warm spells derived from the SRDRN and QDM 
bias corrected  Tmean. The results indicate that, overall, 
RMSE of annual maximum warm spell between SRDRN 
and observations is consistently lower than Bilinear and has 
small inter-model variability. The RMSE of QDM, however, 
has high inter-model variability, much higher than Bilinear 
for several GCMs (e.g., CanESM5 and ESM1-2-HR).

3.5  Multivariate bias correction

We investigated multivariate bias correction and downscal-
ing of  Tmax and  Tmin using SRDRN, which took both  Tmax 

Fig. 6  Time series of daily 
mean temperature  (Tmean) aver-
aged over the study area. Blue 
cross symbols (+) represent 
 Tmean from the Bilinear (the top 
plot) downscaled, and QDM 
(the middle plot) and SRDRN 
(the bottom plot) downscaled 
and bias corrected GCMs. Red 
lines represent ERA5 data 
(OBS)
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Fig. 7  Monthly mean of daily mean temperature  Tmean from Bilin-
ear, QDM and SRDRN methods compared to observations as aver-
aged over the study area. The blue dash lines represent 20 Bilinear 

interpolated GCMs (the top plot), as well as QDM (the left plot) and 
SRDRN (the right plot) downscaled and bias corrected GCMs, and 
the red lines represent observations

Fig. 8  RMSE of 98th percen-
tile of daily mean temperature 
 (Tmean) from Bilinear, QDM, 
and SRDRN
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and  Tmin as input-output channels (Fig. 1). In this case, fil-
ters with different parameters for the  Tmax and  Tmin input 
channels were simultaneously applied in the convolutional 

operation and these parameters were optimized during train-
ing period by decreasing the differences between the GCM 
models and observations (namely loss function). Thus, the 

Fig. 9  Spatial distribution of  Tmean at 98th percentile for a randomly selected GCM (CESM2-WACCM) and OBS (upper row), Bilinear, QDM, 
and SRDRN (middle row), and their differences with observations (bottom row)

Fig. 10  RMSE of annual 
maximum warm spell for 
Bilinear, QDM, and SRDRN of 
20 GCMs
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intervariable relationship between  Tmax and  Tmin was cap-
tured by the algorithm itself without predefining any rela-
tionships as the other multivariate bias correction methods 
usually do. In general, the RMSE for  Tmax,  Tmin and their 
diurnal range (i.e.  Tmax-Tmin) between SRDRN bias cor-
rected data and observations are much lower than Bilinear 
and QDM for all the 18 GCMs (Fig. 11). Considering RMSE 
of Bilinear as the total GCM bias, SRDRN reduced up to 
24% biases for  Tmax and up to 22% for  Tmin, while QDM 
approach reduced only up to 14% for both  Tmax and  Tmin. 
Unlike other multivariate bias correction methods (Bürger 
et al. 2011; Cannon 2016; Chen et al. 2018; Mehrotra and 
Sharma 2012, 2019), the SRDRN model does not assume 

any relationships among different variables. SRDRN offers 
an “end-to-end” modeling workflow, which allows the model 
to learn auto-customized relationship rather than subject to 
prior knowledge and has improved bias correction skills.

Studies have demonstrated that quantile mapping (QM) 
bias correction method may generate physically unreal-
istic artifacts (Agbazo and Grenier 2020; Thrasher et al. 
2012). To examine this issue, we compared the difference 
between bias corrected  Tmax and bias corrected  Tmin. The 
results showed that about 4% of QDM bias corrected  Tmax 
is smaller than QDM bias corrected  Tmin, while the multi-
variate SRDRN bias corrected  Tmax is always greater than 
or approximately equal to  Tmin (Fig. 12 and Fig. S1 in the 

Fig. 11  RMSE for multi-chan-
nel SRDRN bias corrected  Tmax, 
 Tmin and  Tmax-Tmin, comparing 
with Bilinear and QDM
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Supplementary Information). This result suggests that the 
SRDRN model can capture the intervariable dependence 
between  Tmax and  Tmin, and thus address intervariable 
physical inconsistency.

We compared the performance of SRDRN with the 
dOTC in a relatively complex topography area around 
the state of Tennesse within the study area (see Fig. 13). 
Figure 13 shows the spatial distribution of mean on grids 
of the diurnal range  (Tmax-Tmin) for a randomly selected 
GCM (HadGEM3-GC31-LL). It indicates that the spa-
tial distribution of the mean diurnal range corrected by 
dOTC seems very close to observations (RMSE 0.23 °C), 
which is better than QDM (RMSE 0.31 °C), but is worse 
than SRDRN (RMSE 0.18 °C). The overall assessment 
of dOTC in terms of RMSE and correlation coefficient 
varies depending on different GCMs (see figures S2, S3 
and S4 in the Supplementary Information) and is not con-
sistently better than QDM, and is worse than SRDRN 
for all the GCMs. Regarding inter-variable dependence, 
dOTC generates even more negative values (2.7%) of 
the diurnal range  (Tmax-Tmin) (see Fig. S5 in the Supple-
mentary Information) than QDM (0.16%), SRDRN bias 
corrected results, however, do not have such issue. For 
the dOTC, empirical high dimensional multivariate dis-
tributions have to be esimated first and then multivariate 
coefficients with constraints were solved as a linear pro-
gramming problem, which cannot gurrantee a optimum 
solution especially for very high dimensions and thus may 
cause its deterioration.

4  Discussion

4.1  On stacking multiple GCMs for bias correction

It is challenging to train a deep neural network that can 
perform well on bias correcting unseen data (testing data 
in this study, in a broader context, can be considered as 
“future climate”) in the nonstationary context. Overfitting 
occurs when a neural network model learns the details and 
noise of training data to the extent that negatively impacts 
the performances on the testing data. The most robust way 
to avoid overfitting is to train the model with sufficiently 
large dataset in order to provide the deep learning algo-
rithm more resources to learn the underlying mapping of 
inputs to outputs. Here we sequentially stacked 20 GCMs 
that greatly increased the amount of training dataset 
(Fig. 1), which resulted in a more robust model. Another 
way to improve model performance on the testing data-
set is to use regularization techniques when training the 
model. Regularization is the process which discourages 
learning a more complex model by regularizing or shrink-
ing certain parameters towards zero. The SRDRN algo-
rithm includes batch normalization layers following each 
convolutional layer. Besides solving the internal covariate 
shift and speeding up the training process as mentioned in 
the methodology section, the batch normalization layers 
also served as an implicit regularization technique to avoid 

Fig. 12  Cases where  Tmin >Tmax in QDM bias correction (left panel) and corresponding cases generated by SRDRN bias correction (right panel)
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overfitting and thus improve the model performance when 
facing completely new data (Luo et al. 2018).

Besides benefitting from large training data by stack-
ing the 20 GCMs, SRDRN simultaneously bias cor-
rected and downscaled multiple GCMs, which enabled 
the model to account for relative performances among 
different GCMs against observations and provided more 
resources to discover common noises among GCMs. The 
SRDRN algorithm updated weights per mini-batch size 
(64) by decreasing differences or loss between bias cor-
rected products and observations through back propagation 
algorithm. Since 20 GCMs were stacked in sequence, each 
mini-batch size of data may include some data from rela-
tive well performed GCMs as well as relative poorly per-
formed GCMs. Through the training process, the SRDRN 
algorithm exhaustively learned the relationships between 
different GCMs and observations, and therefore removed 
more noises for the relative poorly performed GCMs and 
converged towards observations as close as possible, 

which made the SRDRN bias corrected GCMs consist-
ent and stable. The distributions for individual GCM were 
also well corrected by SRDRN (see Fig. S6 in the Supple-
mentary Information) compared to QDM which explicitly 
adjusted quantiles individually for each GCM. We bias 
correct multi-model ensemble members together instead 
of each model member separately, for the sake of retaining 
uncertainties of climate simulations contributed from each 
model while correcting total biases. This is conceptually 
similar to the study of bias correcting large ensembles 
from a single climate model (Ayar et al. 2021), which used 
all members together to construct the cumulative density 
function (CDF) for bias correction in order to preserve 
internal variability while correcting biases. On the other 
hand, bias correcting each member separately may over 
adjust the model, which ignore the nature of climate simu-
lation uncertainty represented by multi-model ensembles 
or single-model large ensembles.

Fig. 13  Spatial distribution of mean of  Tmax -Tmin at a complex topog-
raphy area (around Tennessee State area) for a randomly selected 
GCM (HadGEM3-GC31-LL) and OBS (top row), Bilinear, QDM, 

dOTC and SRDRN (left column), and their differences with observa-
tions (right column)



On deep learning-based bias correction and downscaling of multiple climate models simulations  

1 3

4.2  On bias correcting spatial and multivariate 
dependences

The SRDRN deep learning model extracted and evaluated 
spatial features between GCMs outputs and observations, 
and then corrected the biases after reconstructing the spatial 
features. That means SRDRN can correct spatial dependence 
biases (lower RMSE and higher correlation coefficient of 
spatial semivariance for all the GCMs as shown in Fig. 4 as 
well as Fig. S4 in the Supplementary Information), which 
is critical for climate impact assessment considering the 
importance of spatial climate variability. In recent studies, 
Nahar et al. (2018) developed an independent component 
analysis (ICA) approach based on principal components to 
bias correct spatial biases for monthly GCM outputs (pre-
cipitation and temperature), but its improvement is limited 
for the testing dataset due to strictly stationary assumption. 
François et al. (2021) applied a deep learning architecture 
based on generative adversarial networks called CycleGAN 
to correct spatial biases after quantile mapping correction 
for daily GCM outputs. The results are comparable with 
quantile mapping and two other multivariate bias correction 
methods. As a proof of concept, François et al. (2021) used a 
simple architecture of neural networks with a small number 
of CNN layers (7), which may limit its capability on captur-
ing more complex spatial relationships for the correction 
of climate simulations. The SRDRN, however, includes 37 
CNN layers and can potentially capture more complex spa-
tial relationships and correct fine spatial differences between 
model simulations and observations.

SRDRN considered multiple variables as different input-
output channels. The intervariable dependence was captured 
during model training process and SRDRN can learn the real 
complex relationship from the climate “big data” beyond our 
prior knowledge. While this study explored how well the 
SRDRN can capture the intervariable relationship between 
maximum and minimum temperatures, it can be potentially 
applied to simultaneously downscale and bias correct more 
climate variables besides temperatures. Current multivariate 
bias correction approaches including dOTC, however, pre-
sent differences in terms of assumptions and philosophical 
features (such as deterministic versus stochastic) (François 
et al. 2020). Consequently, the performance of the cor-
rected outputs can vary largely from one method to another 
and mostly fail to compete with univariate bias correction 
methods particularly for testing dataset as shown in the fig-
ures S2-S5 in the Supplementary Information as well as in 
the previous studies (Cannon 2018; Chen et al. 2014; Chen 
et al. 2018; François et al. 2020; Guo et al. 2020). Further-
more, the existing univariate bias correction methods that 
ignore the intervariable relationship may generate unrealistic 
artefacts and thus it is necessary to consider multivariate bias 
correction, which is also important for large-scale modeling 

frameworks such as assessing risks from compound extreme 
climate events (Zscheischler et al. 2018).

4.3  Caveats and future study

The results indicate that the SRDRN deep learning model 
can reduce more biases in space, time, and extremes com-
pared to conventional bias correction methods, as well as 
correct biases in spatial and intervariable dependence for 
‘future’ climate in the nonstationary context. However, while 
SRDRN, as a convolutional type of deep learning approach, 
excels at learning spatial patterns, it did not consider sequen-
tial connections of daily temperature or temporal structure. 
Since temperature has high autocorrelation, incorporating 
time dependence between images by replacing 2-dimen-
sion convolutional layers with 3-dimension ones has the 
potentials to further improve bias correcting performance, 
which can be explored in the future study. Furthermore, the 
SRDRN was evaluated for bias correction and downscaling 
daily temperature, which is a continuous variable. We expect 
the model would also work for other continuous climate var-
iables, such as solar radiation, humidity, etc. However, for 
highly skewed, non-continuous climate variables like pre-
cipitation, it requires additional research, for example, by 
incorporating distribution into loss function (Tao et al. 2016) 
or adding regularization term that penalizes deviations at the 
grid cell resolution between GCM outputs and observations 
(Ravuri et al. 2021). Another issue is that we synchronized 
observations and model simulations in time and used MSE 
as loss function, which means daily maps from the 20 GCMs 
are forced to resemble those observed, without considering 
the atmospheric state of the different climate models. As a 
result, dynamics of the climate models may be lost during 
the correction procedure, which may be a limitation of using 
the SRDRN corrections for impact analyses. This limitation 
may be addressed in the future by modifying loss functions 
to match distributions of climate models with observations 
(instead of day-to-day sequence) while bias correcting all 
the required climate variables simultaneously considered for 
impact studies.

The SRDRN algorithm is capable of learning finer and 
more intricate features especially for extreme events com-
pared to shallow plain architectures (Wang et al. 2021). 
Systematically bias correcting intricate feature differences 
between GCM and observations is critical for impact assess-
ments facing climate change. But one weakness of the 
SRDRN algorithm is that it does not explicitly account for 
physical processes in the bias correction procedure Fran-
çois et al. 2020; Ivanov et al. 2018; Maraun et al. 2017; 
Wang et al. 2021) and lacks interpretability to help the users 
gain understanding of the model (McGovern et al. 2019). 
Thus, additional studies, such as incorporating causality 
analysis (Liang et al. 2021), can be helpful to improve its 
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interpretability in the future. Furthermore, one limitation of 
deep learning is its computational cost. The training time for 
this study for each scenario was about 5 h using one graphic 
processing unit (GPU). For larger scale applications, more 
GPUs may be needed to reduce the computing time, which 
will accordingly increase the computational cost.

5  Conclusions

Climate models requires bias correction and downscaling 
for accurate impact analysis. Current univariate bias cor-
rection approaches are mostly applied to one variable, one 
location at a time, which may result in misrepresentation of 
the spatial and intervariable structures of the bias corrected 
outputs. On the other hand, current multivariate bias correc-
tion approaches assumed pre-defined relationships among 
variables and over simplifications for handling very high 
dimensional data, causing disparity between training and 
testing periods and loss of capability under nonstationary 
climate change condition. The deep learning approach based 
on convolutional neural network can systematically learn 
complex relationships among multivariate 2-dimensional 
data without pre-assuming any relationships and thus has 
great potentials to address the current issues faced by cli-
mate model downscaling and bias corrections. In this study, 
using 20 CMIP6 GCMs  Tmean,  Tmax and  Tmin outputs, we 
comprehensively evaluated SRDRN, a deep convolutional 
neural network based model, comparing with one widely 
used univariate (QDM) and one multivariate (dOTC) bias 
correction approaches, for climate model downscaling and 
bias correction. We found that SRDRN considerably cor-
rected more biases in space, time, and extremes compared to 
QDM and dOTC. It also well addressed the artefacts found 
in QDM and dOTC by well reproducing spatial and inter-
variable structures of the observations. It greatly reduced 
inter-model variability among downscaled and bias cor-
rected GCMs by considering historical relations between 
different GCMs and observations, and potentially preserved 
inter-model uncertainty through combining all the GCMs 
together during training. Further studies on deep learning 
by additionally accounting for sequential relationships of 
climate variables and further evaluating and improving for 
highly skewed non-continuous climate variables may take 
the climate model downscaling and bias correction to the 
next level.

Appendix A

It is difficult to estimate a mapping function from x to H(x) as 
plain architectures do (Fig. 14). Rather than expect stacked 
layers (Layer 1, Layer 2 to Layer n in Fig. 14) to approximate 

H(x), residual mapping explicitly let these layers approxi-
mate a residual function F(x) (i.e., H(x)-x) instead. It has 
been approved that learning residual mapping is relatively 
easier than directly estimating H(x) and can mitigate deg-
radation issue in very deep architectures. Skipping connec-
tions also provide an alternative path for backpropagation 
algorithm to update weights (see the blue line in Fig. 14) 
and avoid vanishing gradient issue.
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